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ASTRACT 

A numerical method for solving incompressible viscous flow problems is introduced. 
This method uses the velocities and the pressure as variables, and is equally applicable 
to problems in two and three space dimensions. The principle of the method lies in the 
introduction of an artificial compressibility 6 into the equations of motion, in such a way 
that the final results do not depend on 6. An application to thermal convection problems 
is presented. 

INTRODUCTION 

The equations of motion of an incompressible viscous fluid are 

atu, + f&k = - ; sip + vAui + Fi ) A s c a;, 
j 

aj24, = 0, 

where Ui are the velocity components, p is the pressure, Fi are the components of 
the external force per unit mass, p,, is the density, v is the kinematic viscosity, 
t is the time, and the indices i, .j refer to the space coordinates Xi , xj , i, j = 1,2, 3. 

Let d be some reference length, and U some reference velocity; we write 

and drop the primes, obtaining the dimensionless equations 

atui + RuIajui = dip + Aui + Fi , 

ajur = 0, 

r This work was prtially supported by AEC Contract No. AT(30-l)-1480, 
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where R = Ud/v is the Reynolds number. Our purpose is to present a finite 
difference method for solving (la)-( 1 b) in a domain D in two or three space 
dimensions, with some appropriate conditions prescribed on the boundary of D. 

The numerical solution of these equations presents major difficulties, due in part 
to the special role of the pressure in the equations, and in part to the large amount 
of computer time which such solution usually requires, making it necessary to 
devise finite-difference schemes which allow efficient computation. In two- 
dimensional problems the pressure can be eliminated from the equations using 
the stream function and the vorticity, thus avoiding one of the difficulties. If, 
however, a solution in three space dimensions is desired, one is thrown back upon 
the primary variables, the velocities and the pressure. In what follows a numerical 
procedure using these variables is presented; it is equally applicable to two and 
three dimensional problems, and is believed to be computationally advantageous 
even in the two dimensional case. In the present paper we shall concentrate on the 
search for steady solutions of the equations; a related method for time-dependent 
problems will be presented-in a forthcoming paper. 

Methods using the velocities and the pressure in two dimensional incompressible 
flow problems have previously been devised. For example, in [4], Harlow and 
Welch follow a procedure which appears quite natural-and may indeed in their 
problem be quite appropriate. It runs as follows: Taking the divergence of Eqs. (la) 
one obtains for the pressure an equation of the form 

where Q is a quadratic function of the velocities, and eventually, a function also 
of the external forces. Boundary conditions for (2) can be obtained from (la) 
applied at the boundary. There remains however the task of insuring that (lb) is 
satisfied. This is done by starting the calculation with velocity fields satisfying (1 b), 
making sure that (lb) is always satisfied at the boundary, and solving (2) at every 
step so that (lb) remains satisfied as time is advanced. An ingenious formulation 
of the finite difference form of Equation (2) reduces considerably the arithmetic 
labor necessary to solve it. 

In our opinion the main shortcoming of this procedure lies in its treatment of 
the boundary conditions. In order to satisfy the boundary conditions for (2) 
derived from (la) and to satisfy (lb) near the boundary, it is necessary, in the 
finite-difference formulation, to assign values to the velocity fields at virtual points 
outside the boundary, and this in a situation where no reflection principle is known 
to hold. 

Were this procedure to be used only for the purpose of obtaining an asymptotic 
steady solution (which was not the purpose in [4}), it would have additional 
shortcomings. It would be computationally wasteful to solve (2) at every inter- 
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mediate step, and moreover, in many problems, to obtain an initial solution 
satisfying (lb) would be a major problem by itself. 

We shall now present a method for solving the system (la)-(lb), which we 
believe to be free of these difficulties, and computationally more efficient. We shall 
not use equation (2). 

THE METHOD OF ARTIFICIAL COMPRESSIBILITY 

We introduce the auxiliary system of equations 

atu, + Raj(ui2+) = --asp + AU, + F~, 
atP + a+, = 0,~ = ppi 

(3) 

An alternative form for the first of these equations is 

atut + R@jui = -&p + Aui + Ft (3’) 

We shall call p the artificial density, 6 the artificial compressibility, and p = p/6 
the artificial equation of state. t is an auxiliary variable whose role is analogous 
to that of time in a compressible flow problem. 

If, as the calculation progresses, the solution of (3) converges to a steady 
solution, i.e. one which does not depend on t, this solution is a steady solution of (1) 
and does not depend on 6. 6 appears as a disposable parameter, analogous to a 
relaxation parameter. The system (3) is not a purely artificial construction, as can 
be seen by comparing it with the equations of motion of a compressible fluid 
with a small Mach number. 

Equations (3) contain an artificial sound speed 

c = l/P 

and relative to that speed the artificial Mach number A4 is 

A4 = $ m,ax (1 ut2)1’2 

It is clearly necessary that M < 1. 
It now remains to replace the system (3) or (3’) by a finite difference system, and 

(a) show that the finite difference approximation to (3) is stable, 
(b) demonstrate that the solution of the difference system does indeed tend 

to a steady limit, 
(c) find a value of 6 and of any other parameter in the finite difference system 

such that the steady limit is reached as fast as possible, and show that the resulting 
procedure is indeed efficient. 
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(d) show that the steady limit of the difference system does tend to a steady 
solution of (1) as the mesh width tends to zero. 

The author has not been able to carry out this program analytically, forcing 
heavy reliance on the numerical evidence. 

It is not indispensable that the solution of the differential system (3) tend to a 
steady limit, as long as the solution of the difference system does. It is however 
believed that the solution of (3) does tend to a steady limit, at least in the absence 
of external forces, under quite general conditions. This can be proved in the 
limiting case R = 0, for problems in which the velocities are prescribed at the 
boundary. By linearity it is sufficient to consider the case of zero velocities at the 
boundary. From (3) the following equality can be obtained 

uiui + $- dV = - (QQ)~ dV. 

The integrands on both sides are positive; hence the ui tend to the limit ui = 0, 
and p to a limit independent of t. From (3) one sees that this limit is independent 
of the xi and therefore is a constant. 

THE FINITE-DIFFERENCE APPROXIMATION 

The system (3) can be used with various difference schemes. In the one adopted 
here, after some experimentation, the inertia and pressure terms are differenced 
according to the leap-frog scheme, i.e., both time and space derivatives are replaced 
by central differences, and the viscous dissipation terms are differenced according 
to the Dufort-Frankel pattern, in which a second derivative such as 

is replaced by 

rx+(ur;, + uydl - fly+1 - q-l) 24; 3 u(iLlx, , ndt). 

At, Ax, are, respectively, the “time”- and space-variable increments. 
Equations (3) then become, in the two dimensional case, and in the absence of 

external forces 
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with 
gi = p(iAx, , jh, , ndt), u;(~,~, = u,,(iAxl , jAx, , aAt). 

Similar expressions are used in the three-dimensional case. 
It is also necessary to approximate the equation 

atp = -a,2.4, 

at the boundary. Suppose the boundary is the line x2 = 0, represented by j = 1 
(see Fig. 1). A reasonable approximation is: 

0 
i,2 

0 0 

i-l,1 ,J>I i+I,I 

,’ ////////////////// 

MESH NEAR A BOUNDARY 

FIG. 1. Mesh near a boundary. 
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When fP+l -+ p*-l, this expression tends to 

which approximates aju, = 0 on the boundary to order dx, . A possible second- 
order approximation is 

One notices that these formulas contain three levels in appearance only, for, 
since utT1 does not depend on @.$, the calculation splits into two unrelated 
calculations on two intertwined meshes, one of which can be omitted. If this 
is done, the nth and (n + 1)st “time” levels can be considered as one level. 

This scheme is stable for At small enough, and is entirely explicit. The presence 
of the dissipation terms suppresses the instabilities to which the nondissipative 
leap-frog scheme is susceptible. The known inaccuracy of the Dufort-Frankel 
scheme is of no relevance if only the asymptotic steady solution is sought. In fact, 
if we consider the Dufort-Frankel scheme 

At 

which, for At = o(Ax) approximates the equation 

a,u = Au + f A = aI2 + a22, 

then, if we write 

OJ = 8 $g (1 + 4 +J 

+ 246 

(6) 

(7) 

we see that (6) is nothing but the usual relaxation method for the solution of the 
5-point Laplace difference equation, with relaxation parameter w. Returning to the 
general system (4), we see that, since that system is stable only for At small enough, 
w[defined by (7)] can take values only in an interval 0 < w  < w, < 2. This is 
a familiar situation (see, e.g., [l]). 

6 plays a role similar to that of a relaxation coefficient. Suppose the U( are such 
that, at some point the finite-difference analog of (lb) is not satisfied; for example, 
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so that py,$l > ~27’. Then a “density” gradient is formed which, through the 
terms -sip/6 in the momentum equations, will at the next step increase the 
velocity components pointing away from the point (i,j), thus increasing pi,i and 
bringing the equation of continuity closer to being satisfied. This sequence 
resembles a relaxation step. 

A stability analysis of (4) shows that if the boundary conditions consist of 
prescribed velocities, the system is stable when 

max max !A ] Z / + i 
D di i2 2 

[Z’ 2 i- 4cY#,2 + #2” + #22)1’/2/ < 1, 

where 

#i = +&- Sill $i 0 < 4i B 277, i = 1,2, 3, 

x = 4: + u2*2 + WI& 
c = pl2 

If one ensures that the flow is subsonic with respect to the artificial sound speed, 
the above condition is satisfied when 

where n is the number of space dimensions. 
If other types of boundary conditions are imposed, e.g., if the derivatives of the 

velocities are prescribed at the boundary, one has to ensure that no instabilities 
arise due to boundary effects. For details, see [3]. 

In fact, we have at our disposal two parameters, At and 6, to be assigned values 
which make convergence to the steady solution as rapid as possible. The stability 
condition restricts the range of permissible values of these parameters. 

Finally, the accuracy of the finite-difference scheme can be improved in two- 
dimensional problems with the use of staggered nets. This was not done here 
because our programs were written with three-dimensional problems in view. 
Slight modifications of the scheme were found necessary in problems involving 
singular points on the boundary. 

A SIMPLE TEST PROBLEM 

The system (1) with Fi = 0 will now be solved in a square domain D: 
0 < x1 < 1, 0 < xp < 1 with the boundary conditions 

U, = 4X2(1 - X2), u,=O onthelines x,=0 and x,=1, 

I.41 = u2 = 0 on the lines x2 = 0 and x2 = 1. 
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This is a simple problem, designed to test our method. The domain D represents 
a segment of a channel. The reference velocity in the Reynolds number is the 
maximum velocity in the channel, and the reference length d is the width of the 
channel. The steady solution is known analytically; it is 

u1 = 4x,(1 - x2), u2 = 0, p = C - x1 in D 

where C is an arbitrary constant. 
The equation of continuity is represented at the boundary by the formula (5). 

The higher-accuracy formula was also tried, and the results are very similar. 
In Table I results of a sample computation are presented. The initial values for 

Eqs. (3)-or, if one prefers, the initial guess at the steady solution-are very 

TABLE I: ERRORS IN TEST PROBLEM 

N EW -%I E(P) 

0 1. 0. 8. 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 

0.1053 2.0 x 10-8 7.04 
1.03 x 10-Z 1.5 x 10-s 0.61 
1.7 x 10-d 1.0 x 10-d 0.22 
7.1 x 10-b 1.7 x 10-S 1.6 x 1O-2 
6.5 x lO-B 3.8 x 10-S 8.6 x 10-a 
1.2 x 10-e 3.9 x 10-1 7.8 x 10-a 
4.1 x 10-1 1.2 x lo-’ 5.2 x 1O-4 
7.2 x lo-@ 1.7 x 10-S 1.3 x 10-a 
2.3 x 1O-s 6.5 x 10-O 3.6 x 1O-6 
5.4 x 10-g 1.5 x 10-8 9.5 x 10-e 
1.5 x 10-e 4.2 x lo-lo 2.5 x lo+ 
3.9 x 10-10 1.1 x 10-10 6.6 x lo-’ 
1.0 x IO-10 3. x lo-” 1.7 x 10-1 
3. x 10-11 1. x lo-” 4.6 x lo-” 
1. x 10-11 less than 5 x lo-l8 1.2 x 10-a 

unfavorable: u1 = u2 = 0 everywhere except at the boundary, p = 0 everywhere. 
These initial values are very unfavorable because u1 is discontinuous, and therefore, 
in the first steps, E&p becomes very large. Convergence is much faster when the 
initial values are smooth, or when they incorporate some advance knowledge 
regarding the final solution. These initial values were chosen to demonstrate the 
convergence of the procedure even under unfavorable conditions. In Table I 
the Reynolds number R is 1,s = 0.00032; 19 mesh points were used in each space 
direction. N is the number of steps, E(u,), E(u,), E(p) are the errors, i.e., the 
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maxima of the differences between the computed solution and the analytic solution 
given above. The constant C in the computed pressure is determined from the 
values of p on the line x1 = 0. 

It should be kept in mind that every step is very simple, being entirely explicit. 
The optimal value of 6,&t , has to be determined from a preliminary test 

computation; it is independent of Ax. At is determined from the relation 

At = 0.6 * Ax - W2 

so that the stability requirement is met. &,,,t is not sharply defined; for R = 0, 
all values of 6 between 0.006 and 0.05 lead to approximately the same rate of 
convergence. 

The channel flow problem was solved for values of R varying between 0 and 
1000. The method converged for all these values, although convergence was very 
slow for the higher values of R. 2&t decreases as R increases. 

The problem in this section is particularly simple; the analytic steady solution 
is known, and it satisfies the finite-difference equations exactly. The method was 
of course applied to less trivial problems, one of which will now be described. 

THERMAL CONVECTION IN A FLUID LAYER HEATED FROM BELOW. 
THE TWO-DIMENSIONAL CUE 

Suppose a plane layer of fluid, of thickness d and infinite lateral extent, in the 
field of gravity, is heated from below. The lower boundary x3 = 0 is maintained 
at a temperature To , the upper boundary x3 = d at a temperature Tl, with 
To - Tl positive. (x3 is the vertical coordinate.) The warmer fluid at the bottom 
of the layer expands, and tends to move upwards; this tendency is inhibited by 
the viscous stresses. 

The equations governing the fluid motions are, in the Boussinesq approximation 
(see PI, 1311, 

&u, + u&ii = - -!- &p + vdu, - g(1 - a(T - To)) E< , 

a,T + UiajT = kd; aiuj = 0, 

where k is the coefficient of thermal conductivity, g is the force of gravitation, 
T the temperature, 01 the coefficient of thermal expansion of the fluid, and Ei are 
the components of the unit vector pointing upwards. 

We write 
d 

u; = ; ui ) 
T - Tl 

T’ = T, - Tl ’ 

x; = Xi 
d’ P’ =; ($,“P 
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and drop the primes. The equations become 

atu, + u,aj2di = - sip + d2di - J$. (1 - q(T - 1)) ci, 
1 

a,T + ujajT = i AT, ajUj = 0 

where R* = [&?gd3(T,, - Tl)](kv)-l is the Rayleigh number, u = v/k the Prandtl 
number, and q = ol(T,, - T,). It is assumed that the upper and lower boundaries 
are rigid, i.e., ui = 0, i = 1, 2, 3 on x3 = 0 and xS = 1. 

It is known from the linearized stability theory that, for R* < Rc , the state of 
rest is stable with respect to infinitesimal perturbations, where Rc = 1707.62 is 
the critical Rayleigh number (see [2]). This is taken to mean that for R* < Rc no 
convective motion can be maintained in the layer. When R* = Rc steady 
infinitesimal convection can first appear; the various field quantities are given by 

u3 = Wx3) 4, 

u1 = f w(x,) 44, 

T  = T(x3> 4, 

4 = f wx3) a,+, (9) 

where 4 = #(x1 , x2) determines the horizontal planform of the motion and 
satisfies 

(aI2 + a22)+ = -my. 

II’( T(x,) are certain fully determined functions, a = 3.117, and the amplitude 
is of course undetermined. 

In two dimensional convection u1 = 0 and the motion is independent of x1 . 
#J has then the form 

9= cos ax, 

when R* = R, . The motion is periodic in xZ with period 2nla. In this section 
we shall confine ourselves to two dimensional problems. 

When R* > R, it is known from experiment that steady convection sets in, 
at least when R* is not too large. We shall assume that the motion remains 
periodic, with a period equal to the period of the first unstable mode (9) of the 
linearized theory. There is no difficulty in trying other periods. The periodicity 
assumption is physically very reasonable. We are interested in determining the 
amplitude of the motions, and more specifically, the magnitude of the heat 
transfer, measured by the dimensionless Nusselt number Nu. NU is the ratio of 
the total heat transfer to the heat transfer which would have occurred if no 
convective motion were present; in our dimensionless variables it is simply 

Nu = $ 1‘ 2n’a 
(o-37- - a,q dx, 

0 
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and does not depend on xs when the convection is steady. For R* < R, , Nu = 1. 
It can be seen from (8) that the only physical parameters in the problem are R* 
and a; the solution does not depend on q, except inasmuch as R* depends on q. 
Changing q in (8) simply implies a change in the definition of the pressure. We 
shall study the dependence of Nu on R* and 0’. 

The auxiliary system used for finding steady solutions of (8) is 

a~, + u,ajui = - sip + hi - $ (1 - q(T - 1)) Ei, 

a,T + u&T = ‘, AT, atP = - a,+ 

with the artificial equation of state, either 

P = $ (P - 1 - c&T - 1)) 

or 

P = (R*bqS) P. 

The artificial sound speed c is in both cases 

c = (R/oqS)1/2 

(10) 

S is the artificial compressibility. The results are not affected by which equation 
of state is used. It should be noted that t in (10) does not represent real time. 

The finite-difference scheme is a straightforward extension of the scheme 
presented before, i.e., a combined leap-frog and Dufort-Frankel scheme. It was 
found that the steady state is reached with less computing effort when the nonlinear 
terms are differenced in a nonconservative form, as in (3’). It was also observed 
that the computation proceeds with greatest efficiency when At is as large as 
possible, and hence, in view of the stability condition, when c is as small as possible. 
Since the artificial Mach number M has to be smaller than 1, q and S were chosen 
in practice so as to have M - 0.5 - 0.8, thus allowing for possible velocity 
overshoots. A rough trial computation was usually made for every class of 
problems to determine the order of magnitude of 44. 

For every value of R* and u it is necessary to determine how many mesh points 
are needed to produce an accurate value of Nu. Serious errors may ensue when 
too few points are used. Every series of calculations was therefore performed at 
least twice, and the results accepted only if they had been approximately reproduced 
by two different calculations with differing meshes. As is to be expected, the number 
of points required increases with the Rayleigh number. 

The initial data for the various problems consist of a zero-order solution on 
which a perturbation is imposed. The zero-order solution is 

242 = ug = 0, T= 1 -x,, 
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with p and p obtained by solving numerically the finite-difference equations in 
the absence of motion. The perturbation which produces the fastest convergence 
to the steady solution was found to be one in which the temperature alone is 
perturbed, by adding to it a multiple of the temperature field of the first unstable 
mode of the linearized theory. 

The steady state is assumed to have been reached when two conditions are 
satisfied: (a) The Nusselt number evaluated at the lower boundary has varied 
by less than 0.2% over 100 steps, and (b) the Nusselt number evaluated at the lower 
boundary and the Nusselt number evaluated at midlayer differ by less than 0.2%. 

Table II displays the variation of NU with R* for u = 1 (see also Fig. 2). A4 is 
the number of mesh points in the x2 direction, and N the number of mesh points 
in the xs direction. These results are in good agreement with some results obtained 
by G. Veronis and P. Schneck [5]. 

TABLE II: Nu AS A FUNCTION OF R*/R, 

R*lRe A4 = 30,N = 26 A4 = 30,N = 28 

2 1.754 1.759 
3 2.093 2.099 
4 2.309 2.317 
5 2.478 2.482 
6 2.608 2.620 
7 2.728 2.735 
8 2.833 2.841 
9 2.927 2.936 

10 3.008 3.021 
11 3.086 3.098 
12 3.161 3.172 
13 3.232 3.241 

Table III gives an indication about the way Nu varies with u, for R*IRc = 7. 
It is seen that Nu does not vary very much with CT, as already discovered by Veronis 
[6] with another type of boundary conditions. 

For the sake of completeness, typical isotherm and stream line configurations 
are represented in Figs. 3(a) and (b). They were obtained with R*/Rc = 7, a = 1, 
M = 30, N = 28. The stream function # was obtained from the computed 
velocities, and affords a further check on the results, since the conditions 

a,+ = 0, a,* = 0 

are satisfied at the upper and lower walls, 
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Nu a6 a function of R*/RC 

o- I I I 
2 

I 
4 6 8 IO 12 ,‘4-R% 

FIG. 2. Nu as a function of R*IRc . 

TABLE III: Nu AS A FUNCTION OF (r 

0 M = 30, N = 26 M=30,N=28 

20.0 2.61 2.68 
6.8 2.68 2.69 
1.0 2.73 2.73 
0.2 2.68 2.68 

THERMAL CONVECTION IN THREE SPACE DIMENSIONS. 

In three space dimensions not only the amplitude of the motions is to be 
determined, but also their spatial configuration. For R* = R, the function 4 
in (9) can be any periodic solution of 

(V + as2 + u”)+ = 0, a = 3.117, 
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RX/R,= 7 

ISOTHERMS 

I 
I 
I 
I Rx/R, = 7 

0. 

STREAM LINES 

I 
I 

da 

FIG! 3. (a) isotherms; (b) stmvn lines, 
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This corresponds to the fact that a given wave vector can be broken up into two 
orthogonal components in an infinite number of ways, with arbitrary amplitudes 
and phases. It is reasonable to assume that the cell patterns are made up of 
polygons whose union covers the (x1 , x,)-plane; possible cell shapes are hexagons, 
rectangles, and rolls (i.e., two-dimensional convection cells). For R* > Rc , 
the nonlinear terms in the equations determine which cell pattern actually occurs. 

The numerical method described in this article is applicable; some computational 
results were described in [3]. The conclusion to be drawn from them is that the 
preferred cellular mode is the roll, but that even this preferred mode is subject 
to instabilities. A search for possible values of R, CJ and a for which such instabilities 
do not occur will be described elsewhere. 
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